ENGINEERING METHODS OF DETERMINING
THERMAL BOUNDARY CONDITIONS BY MEANS
OF TEMPERATURE MEASUREMENT DATA

V. I. Zhuk and A, S, Golosov UDC 536.24,02

Engineering methods of solving the inverse heat-conduction problem, approved in the prac-
tice of processing data of nonstationary thermal experiments, are elucidated.

The determination of boundary conditions (BC) by means of the data of temperature measurements
is carried out during processing and analyzing the results of experimental investigations. Direct measure-
ment of the intensity of the thermal action in an experiment is difficult, as a rule, and usually the nonsta-
tionary temperature field of the characteristic elements in the object under investigation is recorded. The
BC characteristics, the specific heat fluxes or the heat-exchange coefficients governing the thermal mode
of the test, must be sought for by means of available information about heating of the object during analy~-
sis of the test data. The problem reduces to finding the solution of the inverse problem for the nonsta-
tionary heat-conduction equation ({IPHC). In general, formulation of the inverse heat-conduction problem
is incorrect in the sense that there is no continuous dependence of the results of the solution on the input
data, which is especially essential for applied problems when the input information (data of the experi-
ment) contains errors in measurement and decoding.

Because of its timeliness, such a problem has been examined by a number of authors, A survey of
the main papers is presented in [1, 2,3]. The first publication of results is in the papers of Kudryavisev,
Chakalev, and Shumakov [4-7]. According to our information, A, M. Zhuravskii proposed the first solu-
tions of certain problems in 1954,

The state of the question under consideration is such that, as a rule, each investigator starts from
the requirements of practice and independently develops his own method of processing the temperature
measurement data taking account of the singularities of the measurement facilities used and the specifics
of the processes being investigated, At the same time the degree of development of the theory and the
practical methods at this instant permits carrying out an objective analysis of the state of the art and of
noting the optimal means of solving typical practical problems.

Let us consider the solution of the IPHC for nonstationary, relatively short-range, intensive ther-
mal modes of an experiment,

The use of any method of solving the IPHC is determined by the structural peculiarities and the loca-
tion of the temperature sensor in the object under investigation. In practice, it is convenient to use im-
bedded sensors, thermocouples in special casings, Inthe simplest case, the temperature of the heated
surface of the structure is measured successfully, while in other cases temperature measurements are
possible only deep in the walls at some distance from the heating surface and, ina number of cases, only
on a surface opposite to that being heated., For nonmetal structures with a possible entrainment of the
material of the surface being heated, the BC can apparently be determined by measuring the temperature
just in the bulk of the structure.

In conformily with the measurement methods considered and taking into account the specifics of the
processes of heat exchange and heating of structure, it is recommended that a method of determining the
thermal BC be constructed by means of the temperature measurement data.
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Simple algorithms to convert the BC should be worked out in the case of measuring the temperature
of the surface being heated or near it;

Economieal algorithms should be used for IPHC of general form, at least because of the introduc-
tion of definite constraints by means of a priori estimates of possible assumptions (linearization, approx-
imation of the laws of time variation of the heat-exchange characteristics, the motion of boundaries, ete.);

Algorithms with minimal constraints should be worked out to process unique experimental data,

Algorithms to convert the BC according to the results of temperature measurements of the surface
being heated [1, 8] are convenient for the practical purposes of processing the data of thermal experiments,
This problem is correct [2].

The relationships [2]
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can be used for the case of a semi~infinite body. Separating the range of computation [0, t] into k suffi-
ciently small intervals At and denoting the discrete values of the measured surface temperature by
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It is especially convenient for operational processing of temperature measurement data "by hand" on key-
board machines or on small electronic computers,

Analogous dependences can be recommended for finite-thickness plates also [1, 8],
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where the coefficients
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have been tabulated for a number of values of m and AFo or can be evaluated by means of a special sub—
program during the computations of {5) on an electronic computer.

Appropriate computational dependences to determine the heat flux to a heated surface by means of
its measured temperature have been obtained also for infinitely long solid and hollow eylinders.
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For the solid eylinder
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Tables have also been compiled for the coefficients By, (AFo). Inthe case of a hollow cylinder, unilateral
heating from within or without is considered when the other surface is considered heat insulated [15].

The problem of converting the BC in a nonlinear formulation can be realized by solving the direct
problem by some difference method and then calculating the heat fluxes by means of the temperature gra-
dient at the surface [1].

To process the data of temperature measurements by deep-lying sensors, when it is necessary to
take account of the incorrectness of the IPHC, direct methods are acceptable in a number of practical
cases [1,9,10,11]. The following recursion relations can hence be used:
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hollow cylinder heated from without,
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According to the results in [9], the computational formulas proposed above are suitable upon com-
pliance with the condition

AFox >03L (21)
On the basis of our computational experience, the more figorous constraint
AFox > 0.4—0.45 217)

should be used.

The domain of application of computational formulas of the type (11), (13), @5), {17), (19} is broad-
ened because of raising their stability by the method of least squares [8]. Thus, in determining heat fluxes
in the k-th computational interval by this method by using values of the temperature measured at the points
k + j, the stability limit of the formulas is raised to AFox = 0,012 for j =3. The computational formula
hence has the following form (infinite plate):
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On the basis of the computational schemes proposed, algorithms have been developed and programs
to compute the heat fluxes by means of the temperature measured on structural elements of simple geo-
metric shape by using coefficients tabulated or calculated in advance (or during the solution of the IPHC)
have been devised,

Regularization methods [12,13,14], by means of which appropriate algorithms and standard pro-
grams must be compiled, should be used for data-processing problems for a thermal experiment for whose
solution the above-mentioned constraints on the spacing are not acceptable, and also for nonlinear prob-
lems.

NOTATION

t, time; x, coordinate; X, spacing between the heated surface and the point with the measured tem-
perature T, measured temperature; A, coefficient of thermal conductivity; c, specific heat; o, density;
«, coefficient of thermal diffusivity; q, specific heat flux; 4t, computation time interval; R, plate thick-
ness or outer radius of the solid cyhnder, Ry, inner radius of the hollow cylinder; R,, outer radius of the
hollow cylinder; Fo = at/I*; AFo = aAt/I%; I, characteristic geometric dimension, equal to R for a plate
or R, for a solid cylinder; AFox = aAt/X2 £= X/R n=r/R;0=1/Ry; hp= (2n-1) 1/2; vy, roots of the char-
acteristic equation Jy(vy) =0; @, = nlly 'Yn’ roots of the characteristic equation Jy (pyn) Y4 (vn)-Y1 (Pyn) J16yn) =03
p = RyRy; B, roots of the characteristic equation Jy(Bp) =03 Yy(2), Y;(2), zero- and first- order Bessel func-
tions of the first kind; J,(z), J;(2), zero- and first- order Bessel functions of the second kindso, 1, 2, ..., k

refer to running times; k refers to computational time; n refers to the ordinal number of the roots of the
characteristic equation.
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